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Symmetry Control of the Coloring Problem: The Electronic 
Structure of MB2C2 (M = Ca, La, ...) 
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Abstract: The correlation of symmetry with electronic stability of the coloring of an extended network with symmetry equivalent 
positions is studied by using the 482 net found in MB2C2 (M = Ca, La, etc.) as an example. The results are readily extended 
to other systems, and the conclusions are compared with those derived from the moments method. 

Given a molecular or extended network and two different types 
of atoms or chemical groups, what is the best way to distribute 
them in the network for a fixed stoichiometry? This question, 
which has been termed "the coloring problem",1 is frequently faced 
by both molecular and solid-state chemists. 1-3 are some organic 
(substituted square singlet cyclobutadienes C4D2A2

2), inorganic 
(S4X4, X = N,6* P,3b As30), and solid-state (ScB2C2

4") examples.4b 

The simplest way to tackle this problem is by performing calcu-

D D 

( D= donor , A = a c c e p t o r ) 

& 
S 4 X 4 ( X = N 1 P , A s ) 

v._^_.v X^A^, 

Sc 
B 
C 

ScB 2 C 2 

1/2 
0 
O 

lations on an isoelectronic unsubstituted parent network. The more 
electronegative atoms or groups will prefer the positions with the 
higher electron density. These calculations are not only useful 
as a predictive tool but usually highlight the electronic factors 
which control the substitution pattern. This method has been 
called5 "topological charge stabilization". However, if some 
symmetry element exists which makes equivalent every position 
in the parent network, such a strategy will obviously be useless. 
Now the question will be the following: what is the best way to 
lower the symmetry of the network for a fixed coloring stoi
chiometry? In fact, symmetry does not complicate our under
standing of these systems but often considerably simplifies it as 
shown by Hoffmann6 for 1. 

* Present address: Laboratoire de Chimie ThSorique, UniversitS de Par-
is-Sud, 91405 Orsay, France. 

In the present work we explore in some detail the relation 
between symmetry and stability of a coloring for an extended 
network with symmetry equivalent positions. To approach this 
problem we have chosen to look at the electronic structure of 
MB2C2 (M = Ca, La,...) systems.7-12 This study will complement 
our earlier one1 which used the method of moments to view the 
stability of colorings of different types. 

Structure of MB2C2 Systems 

Except for M = Sc, 3, all other MB2C2 phases known (M = 
Ca, Y, La, Ce, Pr, Nd, Sm,...) are isostructural. The structure 
can be derived from the well-known CaB6 arrangement by re
moving the apical atoms of each boron octahedron. Substitution 
of half the boron atoms by carbon gives the MB2C2 structure, 4. 

*&#&&? 

Consequently, the three-dimensional structure can be viewed as 
a series of layers alternately containing the M atoms and the 482 

boron-carbon networks. Now the obvious question is the following: 
how are the boron and carbon atoms distributed in the 482 net? 
Bauer and Nowotny7 proposed for YB2C2 an arrangement with 
alternating boron and carbon atoms within the squares and with 
B-B and C-C contacts between the squares as shown in 5. The 
cell has to be doubled in the c direction and the second B/C net 
at z = 1Ii is rotated 90° with respect to that at z = 0. Bauer and 
co-workers proposed the same structure for LaB2C2

8 and CaB2C2.
9 

Although it could be argued that the lanthanide d orbitals could 
have some role in influencing the bonding with the planar net and 
hence in controlling the coloring, this is not the case for CaB2C2. 
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• C z = o 

O B z = O 

coloring I 

Here it is likely that the electropositive calcium atom is only acting 
as a two-electron donor with respect to the B2C2 net. This view 
is consistent with the known physical properties of the closely 
related CaB6. In consequence we believe the preference for a given 
coloring should be an intrinsic property of the B2C2

2" 482 net. 
In view of the presence of donor-donor and acceptor-acceptor 

contacts in the structure, the proposed coloring 5 is surprising. 
More specifically, this coloring seems to be in conflict with 
well-known ideas from organic chemistry concerning the stable 
patterns for donor-/acceptor-substituted cyclobutadiene and cy-
clooctatetraene systems. Hoffmann has shown6 that for a half-
filled w system13 the all alternate structure 6, where X and Y are 

atoms of different electronegativity, is more stable than 7, with 
X-X and Y-Y contacts. The same result applies to a hypothetical 
planar cyclooctatetraene system. The proposed coloring 5 fulfills 
this requirement as far as the squares are concerned (in fact they 
are distorted to rhombuses) but not with respect to the octagons 
also present in the net. 

A different coloring which fulfills both requirements is 8, where 
the unit cell doubling has occurred not along c but in a perpen
dicular direction. Only donor-acceptor contacts are present in 

Q) M i=\/z 
• C z = o 
O B z = O 

coloring H 

this structure. It has to be pointed out that although a complete 
X-ray study was not possible, 8 was the first structure proposed12b 

for LnB2C2 systems (Ln = lanthanide). 
Although structure 5 has been favored in the writings by Bauer, 

Nowotny, and co-workers,7-10 we believe there are clear theoretical 
arguments against 5 and in favor of 8 for M = Ca and probably 
for all other known systems of this type. In what follows we 
present a detailed analysis of the band structure of the 482 B2C2

2" 
net. The calculations are of the Extended Hflckel tight-binding 
type14 with exponents and parameters given in the Appendix. The 
analysis of the results will rely heavily on symmetry-based ar
guments. 

Electronic Structure of MB2C2 

Let us start our discussion considering the two-dimensional 
boron-carbon net appropriate for CaB2C2. The possible role of 
lanthanide atoms will be considered later. The density of states 

(13) See Section VI of ref 1 for a further discussion of this problem. 
(14) Whangbo, M.-H.; Hoffmann, R. / . Am. Chem. Soc. 1978,100, 6093. 

( O ) (b) 
Figure 1. Computed densities of states for (a) coloring I (5) and (b) 
coloring II (8) of the 482 net. 

for the net corresponding to 5, which we will call I, is shown in 
Figure la. The different bond lengths (B-B = 1.71 A, B-C = 
1.62 A, C-C = 1.31 A) were taken as reported for the CaB2C2 
structure,9 and the squares were distorted as reported for LaB2C2

8 

(C-B-C = 100°, B-C-B = 80°). Interestingly, there is no gap 
at the Fermi level. Projection of the different atomic orbital 
contributions shows that the main component of the DOS in the 
region near the Fermi level comes from the net's perpendicular 
IT orbitals. 

The density of states for the net corresponding to 8, which we 
will call II, is shown in Figure lb. A value of 1.62 A (the B-C 
distance reported for CaB2C2) was taken for all B-C distances. 
As can be seen, there is a very sizable gap (2.8 eV) for the 
occupation corresponding to B2C2

2". In molecules the presence 
of a good HOMO-LUMO gap is often used as an indicator of 
electronic stability. In solids too there is the general idea of linking 
stability with the filling of the electron states up to a band gap.15 

The result of our numerical computations confirms the intuitive 
idea that the coloring II should be more stable than I. In order 
to quantify in some way the consequences of opening a gap at the 
Fermi level in this structure and given the well-known deficiencies 
of the Extended Hiickel method when dealing with bond length 
changes, we repeated the calculations using a common geometry 
for both colorings. A common distance of 1.62 A and regular 
squares were used. The exponents and parameters used are those 
of "real" boron and carbon atoms (see Appendix). The coloring 
II is preferred by 2.09 eV per B2C2

2" unit, confirming our previous 
conclusions. It could be argued that by proceeding in this way 
the net I is disfavored. While in II all distances are close to the 
value they should have, in I the B-B and C-C used in this model 
are not as appropriate. In order to overcome this problem, we 
repeated the calculations using a network with all distances equal 
and the same exponents for all atoms. The two colorings were 
simulated with different electronegativities for the two atoms. In 
practice, different values for the if,,'s were included. These were 
chosen to be those of boron and carbon. The result is that the 
coloring II is favored by 2.28 eV per B2C2

2" unit. A series of 
calculations with different geometries (changes in the bond lengths, 
distortion of squares to rhombuses) and parameters (different or 
common Hu's) always give the same result: absence/existence 
of a gap for coloring I/II and preference of II over I by about 
2 eV. These results clearly show that the preference for coloring 
II is an intrinsic property of the net. 

To understand why this is so, we turn our attention to the band 
structures for the two colorings. All results to be discussed 
henceforth correspond to calculations using exactly equivalent 

(15) See, for example: Pohl, H.; Klose, W.; Anderson, O. K. In Super
conductivity of Ternary Compounds; Fischer, 0., Maple, M. B., Eds.; 
Springer-Verlag: Berlin, 1982. 



Electronic Structure of MB2C2 

Figure 2. Computed band structure for the coloring I (5). *• bands are 
dashed for clarity. 

networks (i.e., a common geometry built from a unique distance 
and equal exponents for the orbitals at each point of the net). 
Calculations using "real" atoms give equivalent results. 
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The unit cell and the Brillouin zone corresponding to coloring 
I are shown in 9. The dispersion associated with various levels 
along the different lines defining the irreducible Brillouin zone 
is shown in Figure 2. As mentioned before, the major contributors 
to the DOS near the Fermi level for I are the ir orbitals. We will 
focus our attention on the ir bands. These bands will be built from 
the well-known ir orbitals of 6 (where X is more electronegative 
than Y) shown in 10. 

With the electron counting for B2C2
2' only two of the ir bands 

should be occupied. In fact the second and third ir bands cross 
and this lies at the heart of the instability of the structure. It 

^ - n 

IO 

should be pointed out that the a bands, which appear very near 
the Fermi level, appear at higher energies with respect to the 
calculation using "real" exponents and parameters. 

To understand the reasons for the instability of I, we need to 
consider the second and third ir bands. At the T point they will 
be built from in-phase combinations in all directions of the ir2 and 
ir3 orbitals 11. These bands represent an in-phase combination 
of T* orbitals from pairs of atoms on adjacent squares along the 
a (Ha) or b (lib) directions. In consequence, these bands appear 
at high energy, the band built from ir3 being at higher energy 
because of the electronegativity difference. When going from T 
(kx = O, ky = O) to X (kx = l/2, ky = 0) the phase relationship 
of the crystal orbitals changes along a but not along b. Conse-
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quently, the antibonding interactions between adjacent cells in 
11a (ir3 band) define bonding interactions (12a), and the band 

is strongly stabilized along T -»• X. In contrast, lib with in
teractions only along b remains unaltered 12b. Moving from X 
(kx = '/2, ky = 0) to M (ky = '/2. ky = '/2) there are phase 
changes only along the b direction and consequently the orbitals 
at M will be as shown in 13. 

Since a symmetry plane perpendicular to the network and 
parallel to a is conserved along T -* X and because of the different 
behavior of orbitals ir2(A) and 7T3(S) with respect to this plane, 
and 7T2 and ir3 bands will cross along T —• X. The two bands will 
also cross along the X -*• M line because of the presence of a 
second symmetry plane perpendicular to the network in the b 
direction. With this information in mind it is very easy to draw 
qualitative dispersion curves along the T —- X and X-^M lines 
(14) that are in excellent agreement with the computed results 
of Figure 2. 

It is clear that the absence of a gap at the Fermi level is a 
consequence not only of the orbital characteristics of four-center 
rings but also of the fact that the symmetry planes in the unit cell 
have been conserved in the extended network. The crossing cannot 
be avoided by distortion of the squares to rhombuses or by making 
the B-B and C-C distances different. The only way to avoid the 
crossing would be to lower the whole ir2 band below 7r3. This, in 
principle, could be achieved by an electronegativity change. 
However, such a change would imply that an in-phase combination 
of the ir* orbitals (lib) would be lower in energy than an out-
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Figure 3. Computed band structure for the coloring II (8). T bands are 
dashed for clarity. 

of-phase combination of T orbitals (13b). As a result there is no 
way to avoid this crossing. 

The unit cell corresponding to the coloring II contains two B2C2 

units. Consequently there are glide planes and screw axes running 
parallel to the a and b directions1615. The band structure com-

15 

puted for coloring II along the different lines defining the irre
ducible Brillouin zone is shown on Figure 3. Because of the double 
unit cell there are eight ir bands (only the lowest seven are shown 
on Figure 3). All bands pair up at the point X and remain doubly 
degenerate along the X —• M line. This is a consequence of the 
existence of these nonsymmorphic elements.17 

The important point to note concerning this band structure is 
that the second and third groups of ir bands do not cross. Intended 
but avoided crossings along T -* X and M —• T are obvious in 
Figure 3. Why these crossings are avoided is simple to see. 
Because there are two B2C2 groups in the unit cell we can build 
symmetry-adapted combinations of the ir orbitals with respect to 

TT, 

TT. 

SA 

SA 

16 

the glide planes 16 or with respect to the planes perpendicular 
to the network and running in the ' / 2 (a + b) direction 17. 

Since one glide plane is conserved along the directions T -* 
X and X -* M and the plane along ' /2 (a + b) is conserved along 
T -» M, one of the crystal orbitals built from T2 is always of the 
same symmetry as one of those built from ir3. These two orbitals 

(16) The glide planes are indicated by the continuous lines 1 and 2. The 
combined effect of the reflection plus semitranslation (glide plane) is indicated 
by dotted arrows. 

(17) Herring, C. Pkys. Rev. 1937, 52, 361, 365. 

TT. 

TT, 

mix and the crossing is avoided along the three symmetry lines. 
The mixing is strong enough to open a gap throughout the Brillouin 
zone. We can conclude quite firmly that it is the properties of 
the symmetry groups of the two colorings which regulate their 
relative stability. 

Some additional insight concerning the nature of the extended 
ir-type interactions can be gained by considering a hypothetical 
net 18. This is a body centered cubic 4.122 network18 where the 
interring ir-type interactions have been removed (of course, some 
hyperconjugative interactions remain). A calculation for this net 
with use of the same common distance and exponents as before 

18 
and with all contacts between squares being of the B-C type gives 
an energy per B2C2

2" unit about halfway between those of I and 
II. With the previous results for I and II in mind, this suggests 
that the coloring II is stabilized by the extended ir-type interactions 
which appear as a result of the interaction between the B2C2 rings. 
By contrast the coloring I is destabilized by such ir interactions 
between the rings. (Note that from the electrostatic point of view, 
coloring I is not favored either.) 

The above analysis is valid for CaB2C2. Would the presence 
of the lanthanide layers modify the results? To answer this 
question we repeated the calculations using the full 3-D tetragonal 
structures 5 and 8 where, for the purpose of comparison with the 
2-D calculations, the ideal boron-carbon net was used. Structure 
8 is favored over 5 by 1.78 eV per B2C2La unit which indicates 
that the lanthanum atoms have a very small influence on the 
relative stability of the two colorings. Using a rigid band model, 
we evaluate from this calculation a difference of 1.81 eV for 
CaB2C2. The difference is maintained for electron counts cor
responding to the lanthanide series. This series of results suggests 
that the lanthanide atoms have only a marginal importance on 
favoring one or the other structure. Essentially, they act as 
two-electron donors to the boron-carbon nets, the other electrons 
remaining in the relative narrow d (or f) bands of the metals.19 

In view of the present results, a careful reexamination of the 
LnB2C2 structures is warranted. CaB2C2 is especially interesting 
in that the conducting and optical properties of the structural 
alternatives should be drastically different for samples of sufficient 
purity. Here the coloring problem impinges on more than 
questions of structural preferences but leads to clear-cut dis
tinctions in physical properties. We recall the prediction made 
in ref 1 that the stable coloring of the B2C2 network should depend 
upon electron count. Specifically for the quarter and three-quarter 
filled bands, the stable species should be the opposite to that found 

(18) Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New 
York, 1977. 

(19) It is interesting to point out that if the metal atoms were acting as 
a three-electron donor a different planar network (that present in ScB2C2, 
structure 3) might result: Burdett, J. K.; Lee, S. / . Am. Chem. Soc. 1985, 
107, 3063. This result relies on the assumption that the structural choice is 
dominated by the electronic effects. Metal size effects can also play a role 
in this choice. 
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for the half-filled case. Removal of electrons from CaB2C2 
eventually leads to emptying of the a levels, and so our computed 
results here have no meaning, but for the B2C2"

4 system the 
opposite structure to that predicted for B2C2

2" is indeed calculated 
to be more stable. 

Molecular Analogy 
Orbital interaction analyses of the electronic structure of organic 

and organometallic molecules have proven to be very illuminat
ing.20 The same type of arguments can often be found21 hidden 
in the band theoretic language used to analyze the electronic 
structure of solids. Consideration of molecular analogies is often 
useful in guiding our understanding of the electronic structure 
of solids. Here we point out a molecular analogue of the structural 
choice in MB2C2 systems. 

In the parent unsubstituted 482 2-D network 19, all atoms are 
equivalent. As a consequence, the ir2 and r̂3 orbitals of the repeat 
unit are degenerate. When building the crystal orbitals of the 
extended system using these two orbitals as a basis, we will find 
that the two crystal orbitals 11a and lib as well as 13a and 13b 
are also equivalent (i.e., degenerate). The qualitative band 
structure of 14 then changes to that shown in 20. There is no 

20 

gap at the Fermi level with four ir electrons per repeat until where 
this collection of bands is half full. A lowering of the symmetry 
toward I is ineffective in opening a gap at the Fermi level. By 
contrast, lowering the symmetry toward II results with a band 
gap and the structure is strongly stabilized. 

Obviously the choice between structures 5 and 8 is the solid-state 
analogue of the old organic chemistry problem: how to stabilize 
a singlet cyclobutadiene?6 From the two ways to lower the 
symmetry 6 and 7, only the first one effectively opens a gap 
because both the ir2 and Ir3 orbitals can be restricted to one of 
the ir X or Y subsystems 21. It is then the electronegativity 
difference which creates the gap. 

nn 
A A J" Y Y 

A A \ X Y 

21 

Coloring in a 63 Net: Boron Nitride 
Our analysis of the MB2C2 problem shows the utility of careful 

consideration of symmetry properties in understanding the results 
of band structure calculations. We would like to point out that 
this is not just a peculiarity of the 482 net. Similar considerations 
can be applied to very different systems, for example, to phase 
transformations in solids.22 

(20) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions 
in Chemistry, Wiley: New York, 1985. 

(21) Whangbo, M.-H. In Crystal Chemistry and Properties of Materials 
with Quasi One-Dimensional Structures; Rouxel, J., Ed.; Reidel: New York, 
1985. Hughbanks, T.; Hoffmann, R. J. Am. Chem. Soc. 1983, 705, 3528. 

(22) Burdett, J. K.; Lee, S. J. Solid State Chem. 1982, 44, 415. Burdett, 
J. K.; Canadell, E., unpublished results. 

A problem related to that of the coloring choice in MB2C2 is 
that of the distribution of boron and nitrogen atoms in hexagonal 
boron nitride (i.e., coloring in an isoelectronic 63 two-dimensional 
net). A series of model calculations was performed for an ideal 
graphite network. (The exponents for every atom in the network 
were identical, and the different coloring simulated by changing 
the electronegativity of the different centers.) The experimentally 
observed coloring 22 was found to be substantially more stable 
than the rival colorings 23 and 24. 
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It is interesting to note that it is only for coloring 22 that a gap 
develops at the Fermi level, and this fact is clearly related to the 
stability of this system, i.e., it is the observed one. The absence 
of a gap in the parent 63 net (graphite) is due to the well-known 
degeneracy of the ir levels at the point K in the Brillouin zone. 
At this point the phase factor is simply exp(ilc>R;) = exp(i'(2ir/3)(/! 
+ I2). The ir crystal orbitals of the system may then readily be 
generated by repeating the ir and ir* orbitals of the unit cell 
according to this phase factor, 25 and 26. Because of the de

generacy of these two orbitals—a consequence of the existence 
of a screw axis along a{ and a2—we can choose a different set 
of mutually orthogonal crystal orbitals. A sum and difference 
of 25 and 26 localize the new crystal orbitals in two equivalent 
and independent subsets (starred and unstarred in 27) of the 63 

net. Obviously the most efficient way to open a gap and conse
quently to stabilize the structure is to lower the symmetry of the 
net by taking advantage of the pattern in 27 which results in the 
experimental coloring 22. 

Although the similarity between the boron nitride and sub
stituted cyclobutadiene problems is already evident, the relation 
with the MB2C2 cases is probably less evident. We recall that 
the 482 net is composed of a series of condensed squares and 
octagons. Because of its cyclic nature, the central pair of ir orbitals 
of planar cyclooctatetraene (ir4 and ir5) can also be localized in 
two independent and equivalent sets. Consequently, the best way 
to open a gap in the half-filled 482 net is by doing an electro
negativity perturbation such that two independent and alternate 
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Table I 
•bital 

2s 
2p 
2s 
2p 
2s 
2p 
6s 
6p 
5d 

H11 (eV) 

-15.2 
-8.5 

-21.4 
-11.4 
-26.0 
-13.4 

-7.67 
-5.01 
-8.21 

fi 
1.30 
1.30 
1.625 
1.625 
1.95 
1.95 
2.14 
2.08 
3.78 

"Contraction coefficients used in the double-f expansion. 

sets of points (both in the squares and octagons) are created. The 
possibility of creating two independent and electronically equivalent 
sets of orbitals near the Fermi level (at the HOMO) level is the 
common link between the cyclobutadiene, boron nitride, and 
MB2C2 problems. 
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There have been several approaches to provide simple algebraic 
models for the description of molecular chirality; most recent works 
include various group theoretical approaches1"6 which have given 
new insight and new methodology for such analyses. In this study 
we shall describe an intiutively simple (one may be tempted to 
say, playful) approach that, nonetheless, leads to a rigorous al
gebraic description of chirality in terms of simple polynomials. 

A recent discovery of a set of polynomials describing the shapes, 
and, in particular, the chirality properties of knots of various 
types7,8 is expected to have important implications in a variety 
of applied fields. Whereas the full development of these poly-

(1) Ruch, E.; Schonhofer, A. Theor. Chim. Acta 1968,10, 91. Ruch, E.; 
Schonhofer, A. Theor, Chim. Acta 1970,19, 225. Ruch, E.; Hasselbarth, W.; 
Richter, B. Theor. Chim. Acta 1970, 19, 288. 

(2) Klein, D. J.; Cowley, A. H. J. Am. Chem. Soc. 1978, 100, 2593. 
(3) Ruch, E. Ace. Chem. Res. 1983, 5, 49. 
(4) Ruch, E.; Klein, D. J. Theor. Chim. Acta 1983, 63, 447. 
(5) Mislow, K.; Siegel, J. /. Am. Chem. Soc. 1984, 106, 3319. 
(6) Anet, F. A. L.; Miura, S. S.; Siegel, J.; Mislow, K. J. Am. Chem. Soc. 

1983, 105, 1419. 
(7) Jones, V. F. R. Bull. Am. Math. Soc. (NS) 1985, 12, 103. 
(8) Lickorish, W. B. R.; Millett, K. C. Mathematical Sciences Research 

Institute, 1985, preprint 04212-85. Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, 
W. B. R.; Millett, K.; Ocneanu, A. Bull. Am. Math. Soc. (NS) 1985,12, 239. 
Earlier works that have led to the new developments include Alexander, J. 
W. Proc. Natl. Acad. Sci. U.S.A. 9, 93, 1923, and An enumeration of knots 
and links, Conway, J. H. Computational Problems in Abstract Algebra; 
Pergamon Press: New York, 1970; pp 329. 

Appendix 

The calculations are of the Extended Hiickel type23'24 with the 
parameters and exponents of Table I. The modified Wolfs-
berg-Helmholz formula25 was used. The results for the ideal nets 
for I and II reported in Figures 2 and 3 were obtained with use 
of a common distance of 1.62 A, exponents f2s and f2p of 1.30, 
and the Hu values for B and C (Table I). Calculations for the 
ideal 63 net were carried out with use of a common distance of 
1.42 A, exponents ^25 and f2p of 1.625, and the Hu values for B 
and N. fc-point meshes used in the calculations were as follows: 
64 k-points for type I net; 55 k-points for type II net; 40 k-points 
for 18; 55 k-points for 22; and 64 k-points for 23 and 24. Each 
of the k-points meshes are referred to the number of points 
computed in the irreducible wedge of the appropriate Brillouin 
zone. The DOS curves of Figure 1 were smoothed with Gaussian 
functions with a standard deviation of 0.08 eV. 
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10043-11-5. 
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nomials has required rather sophisticated mathematical techniques, 
nonetheless, their appreciation and intuitive understanding requires 
no more than high school mathematics and their application is 
extremely simple. In fact, their actual generation and application 
to the chirality problems of chemistry, addressed in this study, 
require no more than an understanding of what is polynomial and 
some practical skills in handling a string when tying knots around 
ball-and-stick molecular models. 

In chemistry, chirality is of fundamental importance, appre
ciated by both chemists and mathematicians. This is well-illus
trated by the fact that the very first chemical application of these 
new polynomials has already been described by one of the original 
discoverers of the new polynomials.9 This application has led 
to a description of chirality of cyclic chain molecules which 
themselves form loops, knots, and links such as the molecules 
recently synthetized by Walba.10 Although these molecules occur 
rarely in nature, they are of special theoretical interest. The same 
technique is also expected to find applications in processing electron 

(9) Millett, K. C. Presented at the IUPAC International Symposium on 
Applications of Mathematical Concepts to Chemistry, Dubrovnik, Yugoslavia, 
Sept 1985; to be published. 

(10) Walba, D. M. Stereochemical Topology; King, R. B., In Chemical 
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related early study on similar molecules is described by Wasserman (Was-
serman, E. J. Am. Chem. Soc. 1960, 82, 4433) and by Frisch and Wasserman 
(Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789). 
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Abstract: A method is proposed for the description and analysis of chirality properties of molecules with any number of chiral 
carbon centers. By using a simple algorithm, chirality information of molecules can be transferred to various knots which 
are in turn described by polynomials. These polynomials are remarkably simple, and they are invariant to conformational 
changes and provide an easy test for various types of chirality properties even for molecules of a large number of chiral centers. 
Several examples are discussed in some detail. 
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